Chimps, Human and the genetic ‘switch’

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

A Cornell University study has provided further proof that the divergence of humans from chimpanzees some 4 million to 6 million years ago was profoundly influenced by mutations to DNA sequences that play roles in turning genes on and off.

The study provides evidence for a 40-year-old hypothesis that regulation of genes must play an important role in evolution since there is little difference between humans and chimps in the proteins produced by genes.

Indeed, human and chimpanzee proteins are more than 99 per cent identical.

The researchers showed that the number of evolutionary adaptations to the part of the machinery that regulates genes, called transcription factor binding sites, might be roughly equal to adaptations to the genes themselves.

“This is the most comprehensive and most direct analysis to date of the evolution of gene regulatory sequences in humans,” said senior author Adam Siepel, Cornell associate professor of biological statistics and computational biology.

“It’s taken these 40 years to get a clear picture of what’s going on in these sequences because we haven’t had the data until very recently,” said Leonardo Arbiza, a postdoctoral researcher in Siepel’s lab and the paper’s lead author.

Less than 2 per cent of the human genome — the complete set of genetic material — contains genes that code for proteins.

In cells, these proteins are instrumental in biological pathways that affect an organism’s health, appearance and behaviour. Much less is known about the remaining 98 pc of the genome; however, in the 1960s, scientists recognized that some of the non-protein coding DNA regulates when and where genes are turned on and off, and how much protein they produce.

The regulatory machinery works when proteins called transcription factors bind to specific short sequences of DNA that flank the gene, called transcription factor binding sites, and by doing so, switch genes on and off.

Among the findings, the study reports that when compared with protein coding genes, binding site DNA shows close to three times as many “weakly deleterious mutations,” that is, mutations that may weaken or make an individual more susceptible to disease, but are generally not severe.

Weak deleterious mutations exist in low frequencies in a population and are eventually weeded out. These mutations are responsible for many inherited human diseases.